WS5: Asset Reliability Practitioner Engineer (ARP E) Workshop – with Optional Certification

Description

After a brief introduction into the strategy and the role of the reliability engineer, we will take a deep dive into reliability engineering data analysis, including statistical analysis, Pareto analysis, Weibull analysis, Crow-AMSAA, and other techniques including AI, machine learning, and predictive analytics.

Then we will explore risk assessment and risk analysis, including a deep-dive into asset criticality ranking.

Next, we will explore defect elimination and look at the entire life cycle of the asset, from the project management and design (including designing for reliability, availability, maintainability, safety i.e. RAMS, plus energy efficiency), the procurement process, acceptance testing, through the maintenance and repair process, through to operations.

Then we will take a deeper dive into how to minimize equipment failure by developing an asset strategy (also known as the strategic maintenance plan). We will discuss fault tree analysis (causal tree analysis), Reliability Centered Maintenance (RCM), Failure Modes, Effects, and Criticality Analysis (FMECA), and Preventive Maintenance Optimization (PMO).

Next, we will look at how we can apply a disciplined approach to the way maintenance is performed. We will begin with a discussion of developing a master asset list [MAL], bill of materials [BOM], and a management of change [MoC] process. Then we will discuss work management (planning/scheduling) and spares/materials management [MRO]. While the reliability engineer can’t control what the maintenance department does, you will certainly understand planning and scheduling best practices and how to achieve the best outcome.

Adding to the discussion of work management is a detailed look at precision and proactive maintenance for rotating machinery, electrical equipment, and other asset types. The training will include lubrication application and contamination control, precision laser and belt alignment, precision fastening (electrical and mechanical), and precision balancing.

Next, the course will take a close look at the condition monitoring program and all of the key technologies: vibration analysis, ultrasound analysis, oil and wear particle analysis, infrared thermography, electric motor testing, electrical and power quality testing, transformer testing, partial discharge, NDT, and performance monitoring.

And finally, time is spent on the details of root cause analysis and the Failure Reporting, Analysis, and Corrective Action System [FRACAS]. This is an important component of any reliability program and we cover problem-solving and project management.

But remember, we have the famous Mobius Institute simulations and animations that make these technical topics far easier to learn and understand.

Optional (Once you complete the workshop you will be eligible to take the three-hour, 100-question, multiple-choice ARP E exam at the conference.)